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In the presence of rotation or a magnetic field, the linearized convection problem reduces to a
cubic characteristic equation. In part I, general methods are given for determining the onset of
convection; in particular, the transition from oscillatory to steady modes is considered. The im-
portance of this transition arises from evidence that oscillatory modes are inefficient at transporting
heat. These methods are then applied to a rotating system where the critical Rayleigh number can
be expressed in terms of a Taylor number. It is found that overstable modes develop into steady
unstable modes before the exchange of stabilities for Prandtl numbers less than one-third. The
nature of the motions is discussed and a similar treatment is provided for convection in a magnetic
field.

In part II, criteria for the onset of instability are derived from physical arguments. Convection
can be treated by balancing the work done by buoyancy forces against the energy dissipated. In a
rotating system, the effect of the Coriolis forces is to restrict the cell width and thus to enhance dis-
sipation and promote stability. A magnetic field similarly attenuates the cells and prevents steady
convection until the liberated kinetic energy exceeds the energy in the field.

In part IT1, a cellular model is proposed for turbulent convection in a fluid of negligible viscosity,
where the motion is limited by the non-linear transfer of energy to smaller-scale motions. If the
Rayleigh number R, = gafd*/m*? > 1 the convective transport varies as R, while it varies as R}
when R, € 1. The discussion is extended to convection in the presence of rotation or a magnetic
field; it is shown that overstable perturbations cannot develop into steady turbulent convec-
tion unless the system is already unstable to non-oscillatory modes. The transition from overstable
to steady modes should therefore correspond to a sharp increase in convective transport.
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100 N. O. WEISS

I. THE ONSET OF INSTABILITY
1. InTRODUCTION

The onset of convection in a layer of fluid heated from below was first considered by Lc
Rayleigh (1916) and, in detail, by Pellew & Southwell (1940). The effects of a magne
field were treated by Thompson (1951) who showed that overstable oscillations cot
arise; Chandrasekhar derived criteria for the exchange of stabilities and the onset of ov:
stability in the presence of rotation or a magnetic field: this work can be found in his bo
(Chandrasekhar 1961) whose terminology will be followed here wherever possible. I

TaABLE 1. NOTATION

Prandt] numbers

=7 =7 _Kk_b
h p b 7 bs 7
Rayleigh numbers
afd4 afd*
R = g”r{ Ry = p R, = gﬂ;iz
R afd* b2—1
Rl =F‘=g714’l‘iv R, = pR, =’b2 R5
b2—-1 afd4
Rz = b—le R5 = PRy = g7r4§,<
Taylor numbers
40244 T,
T = 7 T2 = b—zl
T 4Q2%d*4 4Q2%d*
T, = v} P T3 =p0T = K2
Chandrasekhar numbers
_ pHd? 0 —ﬁQ _ pH%d?
= dmpyy ST py VT dmpk?
_Q  pH? _ pH?d?
Ql = 775 - 47T3p’)7V Q4 - .pZQl 4713'0,)72
3 _ pHR? o
QZ "'plQl = 477310,'],( q = Q4
Characteristic times
d? d? d?
T = m2h2y Te = T T = oy

half-width of convection cell
horizontal scale factor: % = 1+ £%d?/n? and
so for a square cell: 42 = 1+ 2d2?/a? gap
specific heat per unit mass at constant pressure rate of transfer of energy through inertial
layer depth subrange: ¢ = w3/d
gravitational acceleration vertical component of curl u
horizontal wave number: k2 = V2—22/022 resistivity: 9 = (4muo)~! where o is the
. . od?. od? electrical conductivity
time constant: § = 575 5 = p5 = 50 temperature perturbation
thermometric conductivity
kinematic viscosity
density
time constant
discriminant of cubic equation
temperature
angular velocity of rotation

volume coefficient of thermal expansion
superadiabatic temperature gradient

(S RN
AR JKR

EENR

velocity vector

vertical component of velocity u
magnetic induction

d/dz

energy transport (ergs cm—2 s—!)
energy transport: Efc,p

Nusselt number: F[fx

pressure

NN NOEE &
DEFAD T A P [
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CONVECTION IN THE PRESENCE OF RESTRAINTS 101

treatment is extended here to cover the transition from oscillatory to steady modes. There
is some experimental evidence that oscillations are less efficient than steady modes at
transporting heat so it is also important to discover whether overstable modes can develop
into unstable steady modes as the temperature gradient is increased. This possibility was
first pointed out by Danielson (1961 4) in connexion with the magnetic fields of sunspots.

In this part a general treatment is given for the onset of convection and transition from
oscillatory to steady motions; this is then applied to the onset of convection in a rotating
system and—more briefly—to the effects of a magnetic field. The physical principles
underlying this treatment are discussed in part IT and turbulent convective transport is,
finally, considered in part III.

The notation used is consistent throughout the paper and is summarized in table 1.

2. GENERAL TREATMENT

We shall consider the onset of convection in systems with an imposed external restraint
such as rotation or the presence of a magnetic field. Our method is to assume the usual
Boussinesq approximation and then to linearize the equations of motion; the treatment
therefore refers only to small disturbances. We can express these perturbations in terms of
a set of orthogonal modes, each of which may then be treated separately.

We suppose that such a mode varies exponentially with time, as e*: then the equations
of motion with suitable boundary conditions will give us a characteristic equation for s.
In the examples with which we shall be concerned, this will be a cubic and can be written

$34+A4s*+Bs+C =0, (1)
where 4, B and C can be expressed as functions of the wave number of the particular mode,
of the Rayleigh number R = gofd*xv, (2)
of the Prandtl numbers pr=v[k and p, =17y, (3)
and of a dimensionless number characterizing the restraint. For rotation this is the Taylor
number T — 4Q2d4)2, (4)
while for a magnetic field the relevant quantity is

Q = uH*d?ampyy (5)

which I shall call the ¢ Chandrasekhar number’ after its inventor.

Equation (1) has three solutions; of these, one is always real while the other two are
either real or else complex conjugates. Convective instability will correspond to modes
whose amplitude increases with time. Thus, if s is real, instability will occur when s is
positive, while if s is complex instability can set in as oscillations whose amplitude increases
exponentially with time (Eddington termed this ‘overstability’) when the real part of
s is positive. So we must seek the limiting conditions for the onset of instability. Ifsis real
we search for a state of ‘marginal stability’ when s = 0. (The terminology originally
developed by Poincaré for the stability of rotating masses has been applied to the problem
of convection also and the transition from stability to instability without oscillations is
injudiciously described as an ‘exchange of stabilities’.) If s is complex, we want the con-

dition that its real part be zero for the onset of overstability.
13-2
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102 N. O. WEISS

From equation (1) we can immediately see that the state of marginal stability with s = 0
can only occur if C—o. (6)

On the other hand, for the onset of overstability s must be purely imaginary, say

§ = 18y,
so that (453 —C) +isy(s2—B) =0, (7)
whence, if we equate real and imaginary parts separately to zero,
4B—-C=0. (8)
Note that, since s? > 0, (7) can only be satisfied if
B>0 and ACZx=0. (9)

The general conditions for stability, i.e. for the real parts of the roots of (1) to be all
negative, can be obtained from the Routh-Hurwitz criterion (see, for example, Uspensky
1948) and these are

(1) 4> 0, (10)
(i) C>0 (11)
and (iiiy AB—C> 0. (12)

By comparison with (6) and (8) we can see that (11) corresponds to the exchange of
stabilities while (12) refers to the onset of overstability.

In the problems with which we shall be concerned, condition (10) will be trivially
satisfied ; so overstability is only possible if

B>0; C=>0 (13)

from equation (9). The latter condition shows that overstability is impossible once the
exchange of stabilities has occurred, while the former condition is less strong than (12),

which can be written B> C/A. (14)
Thus overstability arises when AB < C (15)
provided that C>o. (16)
If we substitute x=s—3%4, (17)
equation (1) can be rewritten as x3+Ex+F =0, (18)
where E = B—}A4? (19)
and F=2ZA—1AB+C. (20)
Then we can define the discriminant
A — 4F34-27F? (21)
and the condition for the roots of (1) and (18) to be real is that
A<O (22)

(see Uspensky 1948, or Turnbull 1952).
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CONVECTION IN THE PRESENCE OF RESTRAINTS 103

From the inequalities (10), (11), (12) and (22) it is then possible to decide all that we
require as to whether the solutions of (1) are real, complex, stable or unstable. For fixed
Prandtl numbers and a given horizontal pattern (defined by the parameter b) we can
divide the R-T or R-Q planes into regions where different solutions apply, as, for in-
stance, in figure 1. We see here that for 7> 7 overstability can occur and that the over-
stable oscillations develop into steady unstable motions as the Rayleigh number isincreased.

6
10 i
104_
X
=0t
Il
&, _
el
II /// :
1+ -7 : I
" :
I |
I
I
!
1 7;(0) 1 1 - J
1 10 10* 10
T, = T|n*

Ficure 1. The R\~T) plane, showing the onset of overstable and steady instabilities (p; = 0-025,
b* = 3). Curve o gives the onset of overstability (4B = C); curve di is the transition to steady
modes (A = 0) and ¢ is the exchange of stabilities (C = 0). For the numbered regions see table 2.

TABLE 2. NATURE OF SOLUTIONS OF EQUATION (1) IN DIFFERENT REGIONS OF FIGURE 1

region nature of solutions
I 1 decaying steady mode (s real and negative)
2 decaying oscillatory modes (s complex, with negative real parts)
1I 3 decaying steady modes (s real and negative)
III 2 decaying steady modes (s real and negative)
1 unstable steady mode (s real and positive)
v 1 decaying steady mode (s real and negative)
2 overstable oscillatory modes (s complex, with positive real parts)
\'% 1 decaying steady mode (s real and negative)
2 unstable steady modes (s real and positive)

Let us use Danielson’s terminology and refer to the curve A = 0 as the ‘onset of instability’
for "> T©; when T < T© let us call it the ‘onset of steady modes’. After crossing the
onset of instability curve there are two unstable modes and one of these becomes stable if
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104 N. O. WEISS

we further increase the Rayleigh number so as to cross the exchange of stabilities curve.
Thus, for 7> T, points above the exchange of stabilities curve have one less unstable mode
than points below it, contrary to what applies for 7" < T,

The nature of the solutions to equation (1) in the different regions of figure 1 is shown in
table 2. In figure 2 the solutions s are plotted in the complex plane for fixed 7" and in-
creasing R in the four cases 7 < 7@, T == TO, T > T@ and T 3> T©. Note that there is
always at least one decaying steady mode.

In the following sections the general methods already outlined will be applied to the
particular cases of rotation and a magnetic field and we shall bear in mind the possible
astrophysical applications of the theory.

- sll/
s ‘\

@ (b)
,,, _ Y2
5 (®
—— e i i
s s’ - b2 ( % 75) ‘/2
g
(c) @)

F1Gure 2. Location of solutions to the characteristic equation in the complex plane (p < 1). (@) Values
of sas Risincreased, for T; < T = (1+p) b5/(1—p); (b) the same, but for T} = T{?; (¢) the same,
but for T{? < T, < b5[p?; (d) values of s, = ps as R is increased, for 65/p> < T'. Points labelled
0, 1, ¢ denote the onset of overstability, the transition to unstable stcady modes and the exchange
of stabilities, respectively. s’ = —4%; 5" = —b2[p; 5" = i(T/b?)%.

3. THE ONSET OF CONVECTION IN A ROTATING SYSTEM
(a) The onset of overstability and the exchange of stabulities

The linearized equations for convective motion in a rotating system are derived in
Chandrasekhar’s book; it is impossible to discuss convection without introducing a
bewildering number of symbols but a guide to these is given in table 1.

Let us consider a fluid confined between two infinite horizontal planes a distance d
apart, all rotating with an angular velocity Q about the vertical z axis. On this is imposed
a vertical temperature gradient §. Let a be the volume coefficient of thermal expansion,
k the thermometric conductivity, v the kinematic viscosity and g the acceleration due to
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CONVECTION IN THE PRESENCE OF RESTRAINTS 105

gravity. Then take small perturbations u and ¢ of velocity and temperature respectively
and make the usual Boussinesq approximation. For simplicity let us assume free boundaries,
at which only the normal component of u must vanish. Then we can restrict our attention
to the vertical components w and { of the vectors u and w = curlu, and these satisfy equa-

tions of the form LX =0X/dt, (23)

where L(V%,0/0z) is a matrix of differential operators, V = V2—9%/dz%is the two-dimensional
Laplacian and the column vector
w
X=\|¢].
3
We shall restrict our attention to the class of disturbances that can be expanded in a
series of orthogonal eigenvectors X®, varying exponentially with time; each X® is a normal
mode of the system and has a time constant equal to the corresponding eigenvalue ;.
(This is a class of which each member can be defined by a single component only, so that
if w is arbitrarily chosen then { and ¢ are automatically fixed. Without this restriction, an
extension of the concept of self-adjointness, it would be impossible to use an eigenvector
expansion. Mathematically, this is a significant limitation but it is not physically important
since an arbitrary disturbance will develop into a member of this class in any case.)
Any such disturbance that satisfies the boundary conditions can then be expressed
uniquely in terms of a complete set of orthogonal modes of which one may be written

w w
x=(¢])={z)rmpen (24)
9 ®

where W, Z and 0 are functions of z only whose relative magnitudes are fixed and f{(x, y)
satisfies V3 f = — kY. (25)

The choice of the function f is then determined by the boundaries and symmetry of the
system but does not affect the eigenvalue problem provided (25) is satisfied. In particular,
it is often convenient to take

Sx,y) = expi(kx+ky); K+E;=F. (26)

For convenience, we choose dimensionless units, measuring lengths in terms of the depth
d of the layer and writing

2
:K> S:%J’ h:@, D:éi’ (27)
K ey m

Equations (23) and (24) then give
(D2—h2—s) (D2—h%) W = (2Qd?/n%) DZ + (gad?[n%v) k20,
(D2—h2—s) Z = — (2Qd[mv) DW,
(D2—h%—ps) © = — (pd*[n%) W.
Let us finally define b? = 1+4-h? = 1 +K2d?[m2. (28)
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106 N. O. WEISS
The characteristic equation is then

$3+As2+Bs4+C =0

with A~ (Blp) (1-+2p), (29)
B = (1/p) [6*(2+p) +p1,—R,], (30)
= (6%/p) [6*+T;,—Ry], (31)
T T
where 7; = b2 = 7sz2 (32)
br—1 b2 —1
and R2 = —b—z*—Rl == W-R (33)

The general methods of § 2now yield criteria for the onset of overstability and the exchange
of stabilities to take place. Thence we can establish, as a function of the Taylor number,
the minimum Rayleigh number for which either form of instability can occur.

The exchange of stabilities then occurs at a Rayleigh number

1
RY =5 (34)

while overstability sets in at

Ry = 2(147) Do+

(1 +p)2 ] (35)

Moreover, overstability is impossible unless RY < R{, for which a necessary condition is
that p < 1. Then the lowest value of 7] for which overstability can occur with a given 5?2 is

TP — i*ﬁ 5, (36)
. . 2 b
when overstability sets in at R, = 1—p =1 (37)
From (34), RY attains its minimum value of R{ ;. with corresponding 52 when
T, = 2b8—3b%
and so RO . = 3b2, (38)
whence we can express 7; as an explicit function of RY
T, — 23R in) R i (39)
and as 7] - o0, from (39), RY o — 3(3T7)%. (40)
Similarly, for the onset of overstability
R — 6(1-1) (41)
2 () 3 ()
and 1= ) o)) (42

4 3%
so that as 77 — oo we have R, — ﬁ{i%} (317)% (43)
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CONVECTION IN THE PRESENCE OF RESTRAINTS 107

Most of these results, which are reproduced here for completeness, have already been
derived by Chandrasekhar (1961). However, the explicit expressions (39) and (42) have
not been given before.

(b) The transition from oscillatory to steady motions

We must now investigate the transition from overstable to non-oscillatory convective
modes. Sowe have first to obtain the discriminant Aand to find the condition that it be nega-
tive. Because of the complexity of this expression we then consider the extremes when 7 is
very large or very small and derive the minimum Rayleigh number for the onset of steady
instability in either case.

Referring to equations (19), (20) and (29) to (31) we have here

E=(1/3p") [-(1=$)?0*+3p($T,— R,)] (44)
and F = (6%/27p°) (1 —p) [2(1 —p)* 6%+ 9p(2p T+ Ry) ], (45)
whence
A= (1/p*) [4(1=p)* T50°+ (1 —p)* (8> T3 +20pT, Ry — RE) b+ 4p(pT,— R,)°].  (46)
Then for the roots of the characteristic equation to be real we require that

A<O
which becomes

S=4(1-p)* 116"+ (1—p)*[8p T} +20pT, R, (b2 — 1) — R}(b*—1)] 6°
4T —R(P -1 <0.  (47)
A necessary, though not a sufficient, condition for this inequality to be satisfied is that
Ry > pT/(B—1). (48)
Now f=0 (49)

is a cubic in R, with a solution R{¥(T, ?) where R is the minimum value of R, for which
a non-oscillatory mode can occur for a given 7} and 2. We shall also be interested in finding
the minimum value of RY for a given T7; that is, we want to solve (49) subject to

df]0b? = 0; (50)
and from (47)

016> = 24(1 —p)* T, 610+ (1 — )2 [8b484* T3+ 20pT; R, (02— 1) — R(5—1)?}
1 85(209T; R, — 2R3 (6>~ 1)}] — 12pR,[ Ty — Ry (B2~ )2, (51)

The variation of R{ with T, for a given value of 42 has already been shown in figure 1.
However, no purpose is served by searching for a general solution of (49) or (51), since the
resulting expressions are too involved to be of any value. It suffices to evaluate R when
T, is either small (so that the first term dominates equation (47)) or very large.

(i) Let us consider first the case when 7; is small, i.e.
T, < (1—p)2%/2p”. (52)
Then (49) yields R® = 2(1—p) b3T%/(B2—1), (53)

14 VoL. 256. A.
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108 N. O. WEISS
which is a minimum when 4% = 3; that is to say, that for a given
T, < 21(1-p)2° (54
steady modes first appear at
Ry = R, = 3(1—p) (3T7)}, (55)
with b? = b = 3. (56)

(ii) Let us now suppose that 77 is very large and that
Ty > (1-p)255)24%; (57)
then, from (47) and (49), RY = pT/(b%2—1). (58)

This expression decreases monotonically with increasing 42, so we must obtain a better
approximation before attempting to find a minimum value. Let us put

RY = [pT,+x]/(6*—1). (59)
Then x — 3[4p(1—p)? TR 62 < 4T, (60)
and R is least when (1—p)2b8/4p* ~ T;. (61)

This contradicts the assumption in (57) and so (58) cannot hold near a minimum value
of R@.

(iii) We are therefore forced to consider the situation when (61) applies. If p is small,
this will only arise when 7] is very large; let us assume that

PLI(1=p)?> 6> 1. (62)
Then (47) and (51) can be written as
413+ x(y?— 18y —27) —4x2 = 0

and 1242(y+1) +x(5y%— 70y — 99) — 24x% = 0,
where (1—p)2 b8 = xp2T;,
R\(p?—1) = (1+y) pT.
Thence we find that 0§ = 2p2T /(1 —p)? (63)
and R, = 313p(1—p)1* T1. (64)
Comparison of (64) with (40) shows that
R o, = 3[20(1 =)} R (65)

Thus, for a given T satisfying (62), R{®;, is zero when p = 0 or 1 and has a maximum value,
equal to R, ;,, when p = §.

(¢) Dufferent forms of instability and the effect of varying the Prandtl number

We have found the values of the Rayleigh number at which the transition from oscillatory
to steady modes occurs; we must now establish the range over which this corresponds to
a change from overstable to steadily increasing instabilities. In the range where R@
corresponds to the onset of steady instabilities, we shall denote it by R®.
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CONVECTION IN THE PRESENCE OF RESTRAINTS 109

We can then proceed to compare the values of the Rayleigh number at which the various
modes of convection will set in and to establish the relative magnitudes of R, ;. , R ., and
R{.n. In particular, we want to decide under what conditions R{,;, < R{";, so that
steady convection will be able to set in before the exchange of stabilities. We shall find that
for T > 27 this will always be true for small Prandtl numbers. However, if the Prandtl
number is increased, this range is diminished and when p > { the exchange of stabilities
will always occur first.

(i) When the Taylor number is sufficiently small for (52) to be satisfied, R{ is given by
(53) and corresponds to the transition from oscillatory to steady instabilities if

p<L (66)
Then this transition will first occur with
T, =155 and R, =2%/(82—1) (67)
so that for p<1 and %<7 <b8/p?, (68)
RY = 253 T%/(h2—1) (69)
and RY > Ry > R{.

In this range, overstability first sets in with b} = 2 and
RO =135 (3 <T, <27/3p?). (70)

For lower values of 7] > 1, there exist values of 42 for which overstability can occur and the
minimum value of R corresponds to the highest permissible 4¢ = 7}. Thus,

RO = 2T/(TH—1) (1<T, <) (1)

Now (69) shows that R{’ is a minimum when 52 = 3. However this cannot correspond
to an unstable mode unless 77 > 27; thus in the range 1 < 7; < 27, the minimum value of
R{ that does correspond to an unstable mode must have 4% = T7}. Therefore

R =20/ (TH-1) (1<Ty<27), (72)

while R, = 33T (27 < T, < 27/p9). (73)

When T} = 27, RY .. = 1) = 2R?,;,, and as T; increases thereafter both R{ ;. and
RY in. become very much greater than R, ;.. In fact, R{®, = R{, when

1, min.
T, = 5596 > 21

and overstability sets in before the exchange of stabilities for all 7] greater than 5-596.
Now, when 62 = 3, R{ ;. = T, = 27: this is just the point where (73) first applies. We have
already seen that neither overstability nor the transition to steady instability can occur for
T, < 1; for 1 < T; < 27, the exchange of stabilities occurs before the transition to steady
instability, while for 27 < T;, this transition takes place first.

The onset of instability when p < 1 and p?7; < 1 is illustrated in figure 3 from the data

assembled in table 3.
14-2
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10°

R,

10%

10

1 1 1 |

107 1 10° 1 104
Ficure 3. The onset of instability when T = T, < 1. Curve o gives R(®,,;, ; i gives R® .. 5
e gives R®),i,. and d gives R

,min.*

TABLE 3. ONSET OF INSTABILITY WHEN T3 = p, 7} < 1

T] R(le,)min. R(li,) min, Ri‘:)min.

0 675 — —_

1 845 — —
10 171 x 10 — —
102 542x10 5-20 x 10 1-:35x 10
108 2-15 x 102 1-64 x 102 1-35x 10
106 1-91 x 10* 5-20 x 103 1-35x 10
10° 1-89 x 108 1-64 x 10° 1-:35x 10
1012 1-89 x 108 5-20 x 108 1-35x 10

(ii) At the other extreme, when 7] is very large, so that

(11> 1, (74)

R, = 3(3T))%  with 58 = 4T, (75)

while R e, = 1-5[25(1— )21} RO s, (76)
and RO i, = 2[4/ (1 +)1* R (77)

For a given %, overstability is possible only when 7} > (1+p) %/(1—p), so that (77) is
only true for p2 < § or p < 0-81650. If p2 > 2, overstability first appears at R = R’ where

Ry = 3{3(1+2)* (1—)]7 R . (78)

For % = b3, overstability can occur for some R, provided that p < %, and (76) will then
ly. =1 .

PPl Whenf =% hy—4p— T, and Rfp, — R (79)

and for p > §, R, = R{ > R This behaviour of RY .. and RP, . for large T is
shown in figure 4.
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(iii) The only common liquid that has p < % and so exhibits the behaviour described
above is mercury, for which p = 0-025. In order to illustrate the transitions between
different modes of instability the corresponding values of R, have been calculated.

R
@)
Riin. : //
/
L //
1 == 7
~ /
= \\ //
(A AN ’d
\\ /
0 /
N\,
/
\\ /
N7
\ W}
! B . ]
0 05 » 10 15

Ficure 4. The onset of instability as the Prandtl number is varied, for large 7). Curve o has
R=RQ ;ihas R = RY), anddhas R = RY,.

‘The behaviour for 42 = 3 has already been illustrated in figure 1; the values of R, for the
onset of the various modes of instability as 7] varies are displayed in figure 5 and table 4 on
p- 112.

(d) The case when p < 1

Most of the preceding results are valid for all values of the Prandtl number that permit
the relevant motions; in astrophysical applications the effective Prandtl number turns out
to be very much less than unity owing to the efficiency of radiative transfer at such high
temperatures. If this is so, then the Rayleigh number

= gafd*[mkv
and the Taylor number T, = 4QO2%d*/n%y?

will both become extremely large and it is therefore convenient to replace them by the
modified Rayleigh and Taylor numbers

R; = pR, = gofd*[m*«? (80)
and T; = p*T, = 4Q%d* [mik? (81)

neither of which involves the viscosity v.
We can express the results already derived in terms of these modified numbers. Then

(&) — _~_1_ 256
R PGSy [£?6°+T5] (82)
2p(1
and RY — 1’< L44) [bﬁ o p)] (83)
while for T; > ( —p)?,
Rg)mm — 4[2( _p) Ts]ﬁ (84)

and (1—p)25¢ = 2T;. (85)
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1 i
1 10* A 108

1012

Fieure 5. The onset of instability in mercury (p = 0-025). Curve o gives R ; 7 gives R i,

and ¢ gives R ;.

TABLE 4. ONSET OF INSTABILITY IN MERCURY (p = 0:025)

Ty R, ‘ R,

10 171 x 10 o

102 5:42x 10 5:20 x 10
103 2:15 x 102 1-64 x 102
104 9-29 x 102 5-34 x 102
106 1-91 x 10* 106 x 10*
108 408 x 10 2:26 x 10°
1010 877 x 106 4-83 x 106
1012 1-89 x 108 1-05 x 108

If the viscosity is negligible compared with the thermal conductivity, so that

p<1
(83) reduces to RY = 2p[b6+T5]/(6%—1).
Then for 73 < 1, R .. =21p withb? =3,

while as 7; — oo we have

I

R, = 6p(3Ty)} with 68
Also, if T} < b5 RY = 2b3T}/(b2—1)

1 *
315

R,
1-35 x 10
1-656x10
3:00x 10
3:17 x 102
5:47 x 103
1:29 x 10°
276 x 106

(86)
(87)
(88)

(89)
(90)

* Chandrasekhar (1961, p. 129) discusses the case when p € 1. However, he has not considered the
point that 7} becomes infinite if we allow v to go to zero, so that his discussion is valid only for 7 < 1.
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CONVECTION IN THE PRESENCE OF RESTRAINTS 113
and so RY in. = 3(3T3)% with 4% =3, (91)
while if 7; > 103 R i = 2(2T;)% and ¢ = 2T, (92)

We see from (82) that the exchange of stabilities takes place at Ry = 2Zp < 1if T3 = 0 but
that, for a finite value of 73, R{ increases as (73/p) and rapidly becomes infinite. On the
other hand, from (88), overstability will set in at very small R, unless 7 > p~¥, while in-
stability follows at finite R, given by (90) or (92). We can simplify these results by sup-
posing that the viscosity is identically zero, though it then becomes necessary to replace

s = d%c|n?y
by 5, = ps = d?c[n’k. (93)
We then obtain a characteristic equation
s3+As3+Bs;+C =0, (94)
where 4 =2, (95)
B— (1/8) [T;—Ry(6*—1)] (96)
and C=T,. (97)

Then C > 0 always and 4B < C if Ry > 0 so that unstable solutions exist throughout the
positive quadrant of the R,~T; plane, for all values of 42. In particular, the exchange of
stabilities will only take place at 7; = 0—that is, if there is no rotation—when there is a state
of marginal stability. (This degenerate state persists for all R; if 75 = 0; however, of the
other two solutions, one is always unstable for R; > 0.) On the other hand, overstability
is possible for all values of 7;. Thus the criterion for the discriminant to be zero will every-
where be the condition for the onset of steady instability: this is given by (90) to (92).

Physically, one is interested in the lowest temperature gradient that will produce con-
vection: for an inviscid fluid with finite thermal conductivity we see that, while there is
a state of marginal stability which develops into an unstable solution with an infinitesimal
temperature gradient if there is no rotation, for even a small Taylor number this marginal
state itself becomes impossible. Equation (82) shows that viscosity plays a dual role: in
a non-rotating system it makes marginal stability more difficult to obtain; but if rotation is
imposed, it is only through the influence of viscous effects that such a state can occur. The
exchange of stabilities is then an essentially viscous phenomenon.

On the other hand, overstability and the ensuing instability when A < 0 are phenomena
characteristic of an inviscid fluid: as the Prandtl number increases, their behaviour is
modified until they are finally extinguished. When p = 0, overstability occurs for an in-
finitesimal temperature gradient, while instability will follow when the temperature
gradient has grown sufficiently for Ry to satisfy (91) or (92); these conditions depend on
the thermometric conductivity only and are not affected by the presence of a viscosity small
compared with this.

(¢) The time-dependence for overstability and instability

When R, = 0 the characteristic equation gives one steady and two oscillatory modes,

all damped s=—b2fp or s=—b2+i(T,/B2) (98)
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At the other extreme, when R; > T3, b2, the solutions are
) b2 —1 1
s=—b% or S:i[WRI] . (99)

The intermediate behaviour of the solutions has already been depicted in figure 2.

The frequency of overstable oscillations and the growth rate of instabilities are given by
the time constant ¢. When p < 1, we may use (94) to (97) to calculate the value of ¢ at the
onset of overstability and of steady instability.

(i) Overstability
For overstability, if p?2 < T3 < &,
5p=+i(8T;)* or o=+i(3)2Q. (100)
(This agrees with the result given by Chandrasekhar (1961, p. 129) except that this deriva-~

tion is only valid when 735 < 1.)
For 75 > 1,

51 =+1/2(3T5)% or o= +i/2n%d2(3T;)} (101)
or, alternatively, if we introduce the characteristic time for relaxation under thermal
conductivity 7. = d2ntbx (102)
then o =+1,/2/1,. (103)
(i1) Instability

For instability, if p2 < T; < 1,
5= AT or o=2Q//3 (104)
while, if 75 > 1, 51 =3(2T5)} or o= in%d2(2T;)} (105)
or, alternatively, o =1/21,. (106)

Hence we see that for slow rotations (7; < 1) the period of the oscillations in the marginal
state and the time-constant of the first mode of instability are both very near to the period
of rotation (27/€2) and independent of x; while for rapidly rotating systems the period of
the oscillations and the growth-rate of the first mode of steady instability correspond to the
thermal relaxation time 7,.

(iii) Teme constants beyond the initial onset of instability
We shall only consider the case when 75 > 1. The modes with 4% < 17 first become

overstable with s, =+i(TY8) or o =+i(2Q/b). (107)
Similarly, instability sets in for these graver modes with
51 = (3T} or o =n%d2(}T3)% (108)

Thus the gravest modes of overstability have a frequency of the same order as {2 and in-
versely proportional to 5, while they develop into steady instabilities with a growth-rate
independent of 4 but proportional to the cube root of «.
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(f) The nature of the horizontal motions
For an incompressible fluid we have
divu =0 (109)
and the effects of rotation are best demonstrated by taking the curl of the equation of motion,

whose vertical component gives

i 0w
5 = 205 +VVE, (110)

where i, is a unit vector along the z axis and
u.i,=w, curlu.i,=7{_ (111)

The form of the normal modes at the exchange of stabilities has already been obtained

(Veronis 1959; Chandrasekhar 1961). However, if the Prandtl number is less than one-

third, instability sets in earlier and so Veronis’s results cannot be applied. We shall here

extend his treatment to cover the onset of overstability and of non-oscillatory instability.
Let us, then, assume free boundaries and take a disturbance of the form

w = Wecosk,x cosk,y sink,z exp [(A+ig) £], (112)

m m m
where k, = ’L k,= . and £, = a (113)
Then k2 =k?+k% and b% = 14-d??*/n*> as before. (114)

When we substitute into the linearized equations, we force the other perturbed quantities
to show a similar variation with space and time, though they may be out of phase with w.
It is convenient to separate the horizontal motions into two components, u, and u,, where

divu, = —dw/dz, divu, =0,

curlu,.i, =0, curlu,.i,-={.

Then u, = — (k,sink,x cosk,yi, +k, cosk xsink,yi,) /I;“V(%gs—kif eA+ipt (115)
and remains in phase with w, while
u, = —U,cosk,z(k,cosk x sink,yi —k sink.x cosk,yi,), (116)
2QW exp [(A+ip) t—iD]
U, = 227 2P L , 117
here P ) [ )l )
d? 1
™= e T R (118)
and tan ® = u/(A+7,). (119)

Therefore in a non-rotating system u, = 0 and the effect of rotation is to introduce this
additional motion (which has the form of horizontal whirls) without altering the simple
convective circulation u,. Moreover, when oscillatory disturbances occur u, will be out
of phase with u, and with w.

15 VoL. 256. A.
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Suppose for the moment that Q = 0: then the exchange of stabilities first occurs with
% = % and if we assume square cells, so that &, = k, = 3£, then

u, = —Wi(sink,x cosk,yi,+cosk.x sink,yi,) cos k,z (120)

and the horizontal flow has the same maximum speed I/ as the vertical motions. Con-
versely, if we make the plausible assumption that in convective motion the horizontal and
vertical speeds have approximately the same amplitude at a giveninstantitis easy to demon-
strate that the horizontal ‘radius’ or half-width a of the cell must be twice its depth. For
divu = 0 gives ¢ = 2d whence b? = $ once more. Alternatively, if |u,| ~ U, and |w| ~ W,

2a¢ _d
U~ w
so that the typical times taken for a fluid element to cross the cell horizontally and to rise
from the bottom to the top of the layer are equal. If 42> 1, so that the cell is attenuated,
then the horizontal velocity will be inversely proportional to 4 and so much less than W
it should be noted that these motions persist even after Coriolis effects have added wu,
(which may be far greater than u,) and that the time spent in traversing the cell hori-
zontally remains of the same order as that devoted to vertical motion.
We must next consider the velocity field v, induced by the rotation; its streamlines

are given by dy/dx = —tank,x cotk,y

and the resulting flow pattern consists of slightly distorted circular eddies centred on the
rising and falling currents (maxima of |w| in the horizontal plane). Although these eddies
do not promote heat transport, they will be far more prominent than the convective cir-
culation in a rapidly rotating system, where the trajectory of a fluid element will be as given
by Veronis (1959).

Fortunately, we can simplify (116) and (117) by assuming that p < 1 and restricting
our attention to three important cases, namely

(i) |u] > A, 7, which corresponds to the onset of overstability when p < 1,
(ii) A> 7,, |#| which corresponds to the transition from overstable to non-oscillatory
motions when p < 1, and
(iii) 7, > A, |¢#| which corresponds to the exchange of stabilities.
We shall now consider these cases separately.

(i) g>0;A=71,=0.

Then if we take w = Wcosk,x cosk,y sink,z cos ut (121)
we have two values of , corresponding to the two complex conjugate modes, and
®=tin (122)
whence, from equation (116), writing x for |x| we have
U, = 2QW sin ut/uk, (b2 —1) (123)

in either case. So we see that the eddy motions u, oscillate in quadrature with the convec-
tive velocities w and u,.
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At the onset of overstability, g is given by (100) or (101) Then, for p?2 < T; < &L,
U, = /6 Wsinut|k,
and for square cells u, = — (3)! Wsin utu,, (124)
where u, = cosk,z(cos k,x sink,yi,—sinkx cosk,yi,) (125)
and the magnitude of u, is almost the same as that of w. (Since 52 = § the same is true of
u, by virtue of the arguments leading to equation (120).)
Likewise, when 73 > 2% U, — Win utk (3T (126)
and for square cells u, = — (1) Wsin utu, (127)

which has the same magnitude as w. In this case, though, the amplitude of u, is very much
less.
When 7; > 1 and 4% < }7T; overstability sets in for a given b2 with g = 2(2/b, according

to equation (107), and then U, — bWsinut/(5>—1) k. (128)
For a square cell u, = —{b/[2(b2—1)]}} Wsinputu, (129)

so that the magnitude of u, is once again nearly equal to W.

For any overstable model beyond its first appearance, A will be positive and the phase
shift between u, and u, will diminish until it becomes zero as the oscillations give way to
steadily increasing motions, described in the next paragraph.

(i) A>0;7,=p=0.

Let us take w = Wcosk,x cosk,y sink,ze (130)
so that U, = 2QW ek, (b2 —1). (131)
At the onset of steady instability, A is given by (104) or (105). Then, for p? < T3 < 1,

U, = /3 WeN|2k, (132)
and for square cells u, = —3%./3u,eM (133)
Again, for T; > 1, U, = J2 W eNk,(2T,)* (134)
whence, for square cells, u, = Wu, e (135)

So, once more, the eddy motions have the same magnitude as the vertical motions at the
onset of instability.

As before, we can see what happens when 75 > 1 and 4% < 275: we now find that in-
stability sets in for a given 5% with

U, — y2 (3T3)} W Nk, (b2 —1). (136)
However, we now find for our square cell that
u, — (3T3)} Wy ¥ (52— 1)t (137)

and the amplitude of the eddy motions becomes much greater than I in this linear

approximation.
15-2
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(iii) 7,>0; A =pu = 0.

This case is the exchange of stabilities; the behaviour of u, and u, (derived by Veronis
using different terminology) is repeated here for the sake of completeness. With

w == Wcosk.x cosk,y sink,z,

T s
and for 7] > 1 the first marginal state has
U, = V2 Wik,(3T))}; (139)
then, for a square cell, u, = Wu,. (140)
However, for a state of marginal stability with 6¢ < }7;
u, = l:éi)“‘(%lll’)]‘} Wu, (141)

which has a much greater amplitude than w.

From the preceding discussion we see that at the initial onset of instability the horizontal
and vertical velocities have more or less the same amplitude. This holds whether over-
stability, steady instability or the exchange of stabilities is being considered. Beyond this
initial onset, graver modes become unstable in which the eddies have a much greater
velocity than the convection driving them (except in the case of overstability). This seems
incongruous and one might suspect that non-linear theory should modify this result—we
shall return to it in part II.

We have already observed that the time taken for an element to cross the cell is more or
less the same as the time taken for it to rise through the layer; if its speed is approximately
the same in either case—which holds at the onset of instabilities—then the trajectory of
the fluid element must have about the same length in a horizonal as in a vertical plane.
We can express this point, alternatively, by saying that although rotation distorts the
trajectory (and with it the boundary of the convection cell), it does not appreciably alter
the length measured along a streamline (or the length of the contorted boundary of the
cell). This fact was noticed by Veronis (1959).

(g) Conclusion

In this section the onset of convection in a rotating fluid has been studied in some detail,
using the general methods outlined in § 2. This has provided a new approach to the onset of
instability, based on the characteristic equation and enabled us to derive Chandrasekhar’s
results for overstability and the exchange of stabilities very simply.

The most important parts of this section are those dealing with the transition from
oscillatory to steady motions, which has not hitherto been discussed for a rotating system.
In §3(b) we found the value R@ of the Rayleigh number above which oscillatory pertur-
bations were not solutions of the lincarized equations. Next, we distinguished the range
over which this corresponded to a transition from overstable to non-oscillatory instabilities
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and showed that there is a range over which steady instability sets in before the exchange of
stabilities, provided that p < %; in this range

RQ. < RO, < R,

These discussions have most application when p < 1 as in astrophysical problems, and
in that case a simplified treatment can be given. As the viscosity » tends to zero, the criterion
for the onset of instability becomes independent of v and can be expressed as a relation
between R; and 7 only, both of which depend solely on the thermometric conductivity «.

Under these conditions the time constants for steady and oscillatory motions can be
found. When T; < 1, the motions are governed by the period of rotation of the system but
when 75> 1 their characteristic time is proportional to the thermal decay time for in-
stability. From these time constants it is possible to find the ratio of the vortical to the
circulatory speeds that arise in a rotating system. At the onset of instability these speeds
are comparable and they remain so for all modes of overstability. However, the linearized
equations imply that the eddy velocities are much greater than convective velocities for
steady instabilities.

~ The importance of distinguishing the transition from overstable to steady motions arises
from the study of heat transport. Experiments by Goroff (1960), and observations by
Danielson (19614,b) of the magnetic analogue, show that overstable oscillations carry
only a negligible amount of heat. Goroff’s results have been interpreted as showing that
little convection occurs until an exchange of stabilities is possible. On the basis of arguments
given here, the criterion should be that R®_ rather than R, is reached; the gravest
modes become unstable with R ¢ T" and the ratio of R® to R@ is then equal to the Prandtl
number: for mercury this is only a factor of 40 but in the sun it becomes one of 10!%; such
a quantity is scarcely to be sneezed at.

4. THE ONSET OF CONVECTION IN THE PRESENCE OF A MAGNETIC FIELD
(a) The onset of overstability and the exchange of stabilities

- The methods of § 2 are used here to derive the relevant criteria for convection in a mag-
netic field; the treatment will thus resemble that of the previous section—except that it
is shorter.

The onset of convection in a magnetic field was first considered by Thompson (1951)
whose analysis was later elaborated by Chandrasekhar (1952, 1954). The onset of over-
stability and the exchange of stabilities are treated at length in Chandrasekhar (1961).
Danielson (19615) first discussed the transition to non-oscillatory motion in connexion
with the penumbral structure of sunspots. He obtained the characteristic equation—which
is also implicit in Chandrasekhar’s work—and then searched for R® under certain approxi-
mations. He assumed

p<py <1 (142)

and then made further assumptions which enabled him to find values for R® when the
Chandrasekhar number @ is very small or very large. We shall here obtain a general con-
dition for the discriminant to be negative, valid for all p, and p,, before proceeding to the
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astrophysical situation where (142) can be assumed to hold. Then we investigate the
bchaviour of R at extreme values of @, when Q < @, or @ > Q,, where

Qo =+ p2b%[p1- (143)

In the former range our results agree with those of Danielson; in the latter there is a trivial
discrepancy. Danielson’s paper is also concerned with the linear growth rate, which he
treats as a time constant for the system. This demands an understanding of the non-linear
problem and will be discussed elsewherc (Weiss 1964).

The characteristic equation may be derived as before (Chandrasekhar 1961) ; we suppose
a vertical magnetic field H in a fluid with conductivity ¢, introduce the resistivity

7 = (4mpo)~! (144)

and allow a perturbation u, h, 4 in the velocity, magnetic field and temperature. Then,
defining the modified Chandrasckhar number

Q _ i

Q, - i R o (145)
we have $3-+As2+Bs+C:= 0 (146)
with A = (Lprpa) (Dr+pa-+p1£2) 0% (147)
B (1/p1p2) [(A4p,+p2) b4+p1Q1_P2R2]’ (148)
C == (bz/Plpz) [6*+ Q1 —R,], (149)

and R, = (b%--1) R,/b?* as before. Then, from (11) and (12),
R = 6204+ Q,) /(b2 —1) (150)

0) . (1+ 1’2)(/’1 ’I'/)Z).. ,bi 44 [7% e

and mi 15 b1 [b T4 (+2) Q‘] sy

as stated by Chandrasekhar. Once again, it is possible to derive explicit relationships
between Q and R, or R9,, :

Ql = R(l(/:)min‘ - :j;(%]a(le,)rmn)3 (152)
L p) (ML) [ 3RO, o 3RO | 153
and Qi 3 [<1 +12) (p1+12) {2(1 +12) (11 —|~p2)} ] (153)
1- 2
which reduce to R(le,)min. Ql and R(l(f)min. = E 1 ig?;;% Ql (154)
as @ > 0.

Provided that p, > p, (i.c. k > #) overstability is possible and first occurs for a given
b with

1+p,
= —TFL pa 155
@ bo—D1 (159)
_14py b6
at Ri=, ot 129

Ifp, > p, there will exist some range of @, over which overstability sets in at a lower Rayleigh
number than the exchange of stabilities.
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(b) The transition from oscillatory to steady motions
From (146) to (149) we find that the quantities defined in §2 are given by

E = (1/3p303) [{— (03 +3) +£102(1 +p1+Da—D152) } b2+ 301 £o(01 @1 — £ Ry)] (157)

and

F = (02/27p3 p3) [{2(03 + 3+ 313) — 301 bo( 03+ 13+ 01+ Do+ 0302+ 01 3 — 41 1)} B
+9ﬁlzb2{(2p2—pl szlpiz)pl Ql -+ (p2_2pl +lbllb2)p2R2}]’ (158)

whence we can evaluate the discriminant
A = 4E3+427F2.
After a not inconsiderable amount of algebra, we obtain
A =27p2 p3[(p, —p,) (Kb12+ Lb®) + Mb*+ N], (159)
K = (py=p1)) (1= (p1+15) +0102)% (160)
L = 2[{(p3+2p1 pr—205) — 1 (611 6p1 2 — 4p3) + 3 p2(4D1 — o) — 1343} Qs
—{(203—2p1 pr—13) —>(4p — 6p1 po—P5) + 01 05(p1 — 4p2) + P13} R,],  (161)
M = {(—p1+8p3—8p1 o) +1105(10p, — 8p,) — pi p3} T QF
+2{(10pF — 19, po+10p3) — P po(b1+12) + 1103} 01 02 Q1 R,
+{(8p1— 82— 13) — b1 £2(8p1 — 10p,) —p} p3} 3 RS (162)

and N= 4p; po(p1 @ “/’2R2)3° (163)
The condition for the roots to be real is that

where

A<o.

Since the complete expression for A is rather unwieldy, let us immediately adopt some
simplifying assumptions. The condition p, > p, is not satisfied by laboratory materials and
this theory can only find astrophysical applications. Under the conditions prevalent in the
sun and other stars, p, < p,< 1 ; we shall therefore assume this in order to simplify the
criterion (161). (Since the leading terms in K and L cancelled out, it would not have been
possible to assume (142) before deriving (159) to (163).) Then if we write

Q=001 Ri=pRy p3=po/tr =kln>1 (164)

the condition for the existence of real roots becomes

f<o, (165)

JS= —[{6*—2(2p; Qo — Ry)} b* — {8Q3+-20Q, R, — RE}] b*+ 4(Q,— R,)*/ps.  (166)

As in § 3 there is no readily attainable general solution, so we shall consider the extreme
cases when the Chandrasekhar number is cither very small or very large.

where

(1) Suppose that Q,<Qy 1e. Q,<py bt (167)
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It is convenient to alter the notation again by introducing
Rs == py Ry = p3 Ry (168)
and Qs = p2Q1 = ps Qs = ¢* (169)
Then it can be shown that oscillatory solutions exist for all
Ry < R& = b4 [2Q% — 2]/ (b2 —1). (170)
So no oscillations are possible at all unless
Q> 1!
and it can be demonstrated that
R win = ¢°/(g—1) (1 <g<$), (171)
while R = iy (20—8) G <q<p0), (172)
where b? = 1[(2¢+3) —{(2¢—9) (2¢—1)}]. (173)
For 1 < g < ps, (172) and (173) reduce to
RY....=8QY, 07=2. (174)
Now the exchange of stabilities first occurs at
RYin. = Qs (@5>1) (175)

andso R%, - R®, whengq = 2%and then R; = @, — 45-56, while 4? == §. Thus for @, < %22,
R©@ < R? and steady convection sets in at the exchange of stabilities curve; but for
Q, > &2, R¥, > R®  and steady convection sets in at the instability curve first.

(if) Now consider the opposite extreme and suppose that the Chandrasekhar number is

sufficiently large for Q >0, ie Q> pibt. (176)
Then we have, simply, that
o b ; @ b
RY = =@ le. RY = hE=T) Q, (177)
which tend to R == Q, or R = Q/ps (178)

as b2 — c0. Equation (177) does not disagrce with Danielson’s (1961 4) result: he makes the
approximation (176) and obtains an equation

R = o (57—1) (b*+p,Q1)- (179)

But in deriving this equation he has alrcady assumed that 4* < p, @, and so (179) is itself
valid only to that approximation and therefore equivalent to (177). Now (177) is in itself
insufficient to determine R%, , though we can improve the approximation to obtain

R e = 517 [ Q1330 ] (180)

2
with b0 — %—2; - é%Ql. (181)
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Thus for @, > p3/pt we can take .

R(ll,)min. = (p1/p2) Q- (182)
However, as R, is increased beyond this value, other modes set in very rapidly and instability
can occur for 42 = 2 when R = 2R{ .. These graver modes prove to be much more efficient
at transporting heat.

If we define 0 :ﬁQ R (183)
Pop T amp®
so that @;—like R;—is independent of both # and v and varies only with «, then for
(15/4p;)? < Q; < 4
RY i = 8Q%  with 8% =2, (184)
while for Qs > p3
RY i = @5 with 5}0 = 1Q,. (185)
Now for @, > 1, the exchange of stabilities can only occur when a temperature gradient
b=t (186)

is achieved. The exchange of stabilities then is unaffected by viscous effects but hindered by
a high thermal conductivity (which makes the disturbance decay) and assisted by a high
resistivity (which permits the lines of force to ‘leak’ through the fluid). On the other hand
at the transition from overstable oscillations to steady instability, (184) and (185) are
independent of both 7 and v; therefore—although their ranges of validity are determined by
n—the onset of instability is unaffected by viscosity or electrical resistivity. Moreover, when
Q5 > p3, the critical temperature gradient

B = nuH?|4gad? (187)

is independent of all the transport coefficients.

(¢) The nature of the motions

We can draw a few conclusions about the nature of the convective motions. First,
inspection of the perturbation equations shows that they fall into two independent groups:

the first of these yields

[(5—77) (5=772) 24 1| 6. ) =0 (188)
for {=curlu.i, and £=curlh.i,
where the Alfvén velocity vy = (WH?/4mp)t. (189)

The dissipative effects may be neglected near the onset of steady instability, leaving

02 02
(=13 72) €8 0. (190)
So this set of motions corresponds to Alfvén waves travelling along the field lines.

16 Vor. 256. A.
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The remaining equations are similarly coupled and yield
02 02 b2—1 a0
(ﬁ“”‘%@)w:g‘x“ﬁ_?ﬁ (191)

in which the wave equation is modified by a source term. These two sets of motions each
satisfy the continuity equation and are linked only by the boundary conditions.

Secondly, we can look at the time-dependence of the convective motions when p, < p, < 1.
Chandrasekhar (1961) shows that overstability sets in with the frequency

u=mv,ld (192)

for 3 > 1; this result is actually valid over the wider range @, > b%/p,. For non-oscillatory
motions with ¢; < 1 the time constant

A =m,/d (193)
but for @, > 1 A = m2%d~2(Qy b,)* (194)
and at the initial onset of instability

A = mkd-2Q%. (195)

These results resemble those obtained for rotation; the characteristic time for an Alfvén
wave to cross the layer determines # when @;> 1 and A when @, < 1, while thermal
conductivity is unimportant unless @5 > 1 and only affects A.

(d) Conclusion

The inhibition of convection by a magnetic field is more difficult to describe than that
by rotation, since the equations are complicated by the presence of two Prandtl numbers.
If (142) is assumed to apply, the equations are simpler and various results can be obtained,
although it has not been possible to establish with precision the range of Prandtl numbers
over which R®, < R, and the transition to steady instability is important.

The discussion in § 3 of the significance of the results for rotation might also apply here.
In addition, we are now able to resolve a paradox: intuitive arguments indicate that
convection will be halted if the kinetic energy of the motion is less than the magnetic field
energy. But, according to Chandrasekhar’s results, R, is not reached until the available
kinetic energy is far greater than the magnetic energy density. In particular, photospheric
magnetic fields should be able to prevent steady convection, which they do not. It will be
shown in part IT that R{), does correspond to equipartition of energy between the velocity
and the magnetic fields and the transition therefore assumes great importance. Moreover,
as Danielson has argued, this criterion agrees with the observed suppression of convection
by the magnetic fields of sunspots.

II. THE ONSET OF CONVECTION: A PHYSICAL APPROACH
5. INTRODUCTION

In the first part of this paper Danielson’s (1961 4) results for the onset of non-oscillatory
convective instability in the presence of a magnetic field have been generalized and similar
criteria have also been obtained for rotating systems. Itis obviously desirable to extend the
treatment—if possible—to the non-linear heat transport problem. However, mathematical
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weapons seem to fail us here and we are reduced to physical arguments. A physical approach
to non-linear convection should be applicable to the instability problem too and this part is
devoted to the latter topic. Such an approach cannot pretend to great precision (it is
accurate to within less than an order of magnitude) but it does enable us to understand the
nature of the relevant phenomena and comparison with rigorously obtained results indicates
that it is not misleading.

Before making any of these approximations, let us consider a single mode disturbance in
a horizontal fluid layer of depth d, confined between ‘free’ boundaries, rotating with
angular velocity ) about the vertical z axis and heated below so as to give a superadiabatic
temperature gradient f. Let the velocity and temperature disturbances be u and 3
respectively and vary in the vertical direction as sin (7z/d). Then the linearized equations of
motion are

09/0t = wh+« V23, (196)
([0t = 2Q dw|dz+vV¥ (197)
d il
and a—t(Vzw) = -2Q3—2+gocV%v9—}—vV4w, (198)

where « is the coefficient of thermal expansion, « is the thermometric conductivity, v the

kinematic viscosity and

w=u.i,, {=curlu.i, (199)

29
where i, is a unit vector parallel to the z axis. The two-dimensional Laplacian

V} = V2—0%/0z?
and we can write V2 = —n2d~2b2. (200)

At the exchange of stabilities the left-hand sides of the equations vanish, so that from (196)
and (197)

d = wfr, (201)
and - - &= 2nQur,/d, (202)
where 7, = d?/m?% and 71, = d?[n%b% (2083)

are the characteristic times for relaxation under thermal conductivity and viscosity
respectively. Substitution from (201) and (202) into (198) then yields for the exchange of

stabilities RY = (b5+T))/(b2—1) (204)

which is identical with the criterion originally derived by Chandrasekhar. If we were able
to substitute a known eigenvalue for 9/d¢, we could similarly obtain criteria for overstability
and the transition to steady instability but in general this is not possible.

Nevertheless, this approach does help to display the physical significance of the equations:
from equation (196) we obtain a relation between w and & depending on the shape of the
cell through 7, which is inversely proportional to 42; equation (197) gives the magnitude
of { (and so of the horizontal eddy motions) in terms of w and 7,—or, alternatively, will fix
7, and so b2 if we can decide { otherwise. Finally, equation (198) relates the size of the

disturbance to the driving force: in this equation we are effectively balancing the work done
16-2
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(loss of potential energy) in the term gaV$#$ against the dissipation involved in the other two
terms. We might, in fact, balance these quite simply in a non-rotating system where, for
instability, the equation of motion gives

god > w)t,.
But from (196) wpr, >
so that if we put y = gaf (205)
we obtain y7,.7,>1 or R, > b (206)

It is this general method of balancing the operative forces, or work done by them, that we
shall develop in subsequent sections. (As Chandrasekhar has observed, a general variational
principle can be established for these problems and such a principle corresponds to a
balance between the work done by gravity and the dissipation in the system.) Comparison
of (206) with (204) shows that they differ by a factor of $2/(52—1); this error is typical of
the degree of approximation involved.

This method is easily adapted to the non-linear problem, when non-linear transfer of
energy to higher modes, or inertial dissipation, can be substituted for viscous losses.
However, it is reasonable to see first whether it can be applied to the linear instability
problem, where comparison with analytical treatment is possible. This will be attempted
here.

6. THE EFFECTS OF ROTATION AND THE CORIOLIS FORCE

We have first to understand the general effect of rotation on convection and how it
promotes stability. The rotational field does not absorb energy and it is only through the
conservation of angular momentum that the motions are affected. This manifests itself in
the equation of motion as the Coriolis force and it is this force that constrains the convective
velocities to follow a more complicated pattern in attenuated cells. These eddies then
enhance the viscous and inertial dissipation and it is only thus—indirectly—that con-
vection is inhibited.

The Coriolis force 22 au acts at right angles to the velocity and so can do no work;
moreover, if & is vertical only horizontal motions are affected. The rotation changes their
direction without altering their speed or kinetic energy. Consider for the moment an
isolated element of fluid moving horizontally in the rotating system with a speed «: then
conservation of angular momentum compels it to lag behind the rotating fluid as it moves
away from the axis of rotation, whereupon the ambient pressure gradient will force it
inwards. Ultimately it returns to its place of origin. This is the effect of the Coriolis force
and, if it alone acted, the fluid element would describe a circular path of radius

ay = u/2Q) (207)
with an angular frequency 2Q.

Now let us combine this with a simple model of a convection cell. We know that such cells
are polygonal and we do not harm the argument by restricting our attention to a cell that
is square in cross-section. Suppose, then, that there is a rising current in the centre achieving
a maximum vertical velocity w, and that near the upper surface of the cell the fluid abruptly
streams sideways towards the corners of the cell, where it sinks again. The effect of rotation
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is to impose on this circulation eddies with opposite senses of rotation about the regions of
rising and sinking material. The maximum radius 4, of these eddies will be determined as
in equation (207) above and the half-width of the cell is therefore given by

a = 2a, = u/Q. (208)

Let us now assume that # = w. It was shown in part I that this is true at the onset of
convection ; furthermore, the discussion of non-linear convection in part III leads to the
conclusion that the horizontal and vertical components of the velocity remain comparable
there also. Now a can be written in terms of the quantity b, originally defined by equa-
tions (28), (200). Thus we have here that

a? = 2d%[(b%—1). (209)
From (208) and (209), then, we obtain the useful relation
w? = u? = 20242/ (b2 —1) (210)

which provides a quantitative measure of the effect of rotation on the convection cell.
Thus the rotation, acting through the Coriolis force, drastically reduces the cross-section
of the cell in accordance with equation (208) ; but the smaller a is, the smaller the dissipation
times 7, and 7, become, and so the harder it becomes to maintain convection. So, although
the Coriolis force can do no work itself and is unable to counteract the buoyancy forces, yet
it forces the diminution of the horizontal dimensions of a cell and induces complicated
whirling motions in it. It is the consequently enhanced dissipation that promotes stability;
in a non-linear treatment the transfer of energy to smaller-scale modes would be increased
for the same reasons and so heat transport would be impeded. We may note a fundamental
difference here between the effects of rotation and of a magnetic field (despite the resem-
blance between the characteristic equations) for the magnetic field is able to do work on,
or to absorb energy from, the velocity field. We must therefore expect its non-linear
behaviour (at least) to be very different.

To be sure, in an actual cell of the largest permissible dimensions the motions would be
rather more complicated than those described above. The horizontal velocities would not
be confined to a thin boundary layer near the upper and lower surfaces but would occur
throughout, though their maximum amplitude might be expected near the boundaries.
The trajectory of an individual fluid element would then be more nearly a spiral about the
rising current, as depicted by Veronis (1959). Nevertheless, the treatment above suffices
for us to understand the problem. '

7. ROTATION AND THE ONSET OF INSTABILITY

From the discussion in the previous section there emerges an approach to the instability
problem. Suppose that a certain size of cell is established and that a fluid element, starting
with a small but finite velocity, traverses it from bottom to top. In alinear system the energy
fed into a given mode remains in that mode (apart from viscous losses) so that the kinetic
energy at the upper surface will equal the work done by the floating forces, less the dissipa-
tion. As the element nears the surface, the direction (but not the magnitude) of its velocity
is altered and it indulges in the eddy motions described above.
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If its speed w then satisfies w? > 20242/ (b2 —1) (211)

it will be able to traverse the cell and a steady convective motion can be maintained.
On the other hand, if (211) is not satisfied the element will be repelled by the Coriolis
effects and so will retrace downwards the path that it had followed upwards; oscillations
may then follow for a sufficiently high thermal conductivity and if the potential energy
made available exceeds the viscous losses overstability will ensue. The resultant pattern of
motions, once established, then persists, with ever-increasing amplitude.

If the Prandtl Number p = v/kislarge, such oscillations cannot take place. Equation (210)
then defines the width of cell attainable with a given w and the motions will persist only if
the viscous dissipation in a cell of this size is sufficiently small, when convection sets in at the
exchange of stabilities.

For a more quantitative treatment, the problem of the onset of non-oscillatory con-
vection may be expressed thus: to find the condition that a fluid element, in its first transit
through the layer, acquires enough kinetic energy for it to satisfy the inequality (211). We
may distinguish two cases:

(1) p < 1 so viscosity is negligible and we are concerned with the transition from over-
stable to steady motions, and

(i1) p 2 1 so that viscous effects are important, oscillations are prohibited and we must
find the condition for the exchange of stabilities.

Into this approximate treatment we introduce two concepts which must modify the
agreement with the detailed analysis of part I. Their justification requires a study of the
non-linear system, which is carried out in part IIT of this paper. First, we assume that
u ~ w so that results cannot be compared beyond the initial onset of instability. Secondly,
balancing the dominant terms in (196) leads to the relation

> ~ wpr,. (212)
The velocity then follows by taking the typical upward acceleration as

gad—w|,
where w~ (yr.d—d|t,).

This is satisfactory provided that ¢ < 1fd, the maximum average temperature excess that
can be achieved in the layer, i.e.
w<dft, or Ry< 2b% (213)

where R; = pR, = yd*[n*k?, (214)

is a necessary condition for (212) to be applicable. When (213) is not satisfied, we must
follow the well-known approach of mixing-length theory and put

>~ 3fd (215)
whence w? ~ (3yd®>—wd]r,). (216)
But if the motions across the cell are to persist at all, we must ensure that

w>d|r, (217)

in which case we can put w? ~ yd?. (218)


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

CONVECTION IN THE PRESENCE OF RESTRAINTS 129

In so far as the approach in the next few paragraphs involves unrealistic assumptions of
linearity it is not suggested that the criteria deduced must be strictly valid but they do bear
comparison with the conclusions drawn from the perturbation equations. This is an encour-
agement to apply similar arguments to turbulent convection. |

(a) The case when p < 1
Then if (213) is satisfied we may take

w~ 3y7.d (219)

and combining (219) and (214) respectively with the inequality (211) we obtain
R} > 20*T5/ (b2 —1) (220)
and 2T, < b*(h2—1), (221)
where the Taylor number T, = p?T, = 4Q%d*|mc2, (222)

as necessary conditions for instability to take place. For 7 < 1, (221) is trivially satisfied
and the first non-oscillatory mode appears at

R i ~ 2(2Ty)t with 52 = 2. (223)
(The exact treatment of part I gave b? = 3 and R, = 3(3T;)}.)
If 75 > 1 and 45 > 2T;, then we have
R ~ (2T)F with 8¢ — 2T}, (224)
but if 46 < 27} we must take w? ~ yd? (225)
which, with (211), yields Ry > 2T5/(b%—1). (226)

Thus, for 5% of order unity, Ry ~ 75, while instability makes its first appearance as in
equation (224), which may be compared with the results obtained in part I: R, = 3-5T%
and b$ = 2T;. The agreement between the approximate treatment here and the rigorous
derivation is very satisfactory.
(b) The case when p 2 1
We suppose that when convection first sets in, at the exchange of stabilities, the velocity
attained suffices to satisfy (211). It must also satisfy (217), which is the stronger condition if

1T, < bH(b2—1). (227)

Moreover, the inequality (206) has to be satisfied before convection can occur at all. Hence
the rotation has no effect if 7] < 1, while, if 77 > 1 and (227) is satisfied,

R ~ BT with B¢ ~ iT,. (228)
This is in tolerable agreement with the proper result
R = 3(31))%, 0§ =1T,.
When 5% < 37 the solutions of part I demand eddy velocities greater than w so that their
connexion with this treatment is severed. However, this discussion is already of only formal

interest: for if < 1 instability will already have set in as indicated in equations (223) and
(224), while if p 2 1 we have Ry X R, > b4, so that (211), (217) and (225) give

R,>p%* and R, > Ty/2(b2—1). (229)
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Therefore, for 7; > 1, instability should first set in at
R ~ p(3T))% with 8§ =17, (230)

(When p ~ 1, the criteria (228) and (230) may be virtually indistinguishable from each
other or from (224).)
8. AN ALTERNATIVE APPROAGH

The treatment of the last section can be extended to cope with turbulent convection but
there is alsoasimpler, quasi-dimensional approach to the instability problem, with analogous

methods for rotation and a magnetic field. In the absence of any dissipation, equations (197)
and (198) yield Pw | AQEPw b1 09

2T a2 T8 TR g

whose solutions have a time-constant 7 = 5/2Q: (231)

this is the characteristic time in which conservation of angular momentum will destroy the
disturbance. The energy in the convection depends on the gravitational time constant

T, = (y7.) Y = m2b%k/gafd?. (232)

Criteria for the onset of different forms of convection can be expressed simply in terms of
these characteristic times and of 7, and 7,

(a) Owerstability

Before any instability can occur, (206) must be satisfied and overstable oscillations only
arise if the perturbed temperature distribution can disappear before the motions are
reversed. This demands a Prandtl number small compared with unity. Then overstability

sets in when
whe T, =T,> T, <7 (233)

and rotation has no significant effect on (196) unless 7; > 1, when R, ~ T§with b6 ~ T;.

(b) Transition to steady motions

For oscillations to occur, 7, < 7 and they can develop into steady motions when

Tg=T. (234)
Thus, if T3 < 1, R in. ~ TY with 58 ~ 1
Whilea if T'3 >1, Rg,)min, ~ T;? with b? ~ Té.

(¢) The exchange of stabilities

Instability sets in here if viscosity dominates thermal conductivity; (234) must still be
satisfied and, instead of (233), r=1,<m. (235)
So rotation has no effect when 7; < 1 but for 7] > 1, R, ~ Ti% and b8 ~ T.

It may be noted that, although overstability is observed to set in as predicted, Goroff’s
experiments confirm an intuitive feeling that oscillations should be inefficient at trans-
porting heat. Discussion of non-linear effects may be expected to show that overstable
oscillations are largely damped by the inertial dissipation.
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9. MAGNETIC FIELDS AND THE ONSET OF INSTABILITY

A magnetic field also inhibits convection but the convective motions themselves differ
from those caused by rotation; the non-linear effects are also different. In a highly con-
ducting fluid matter may be regarded as frozen on to the lines of force: motions across the
magnetic field can distort these lines but it is still meaningful to speak of them. Each fluid
element, so to say, ‘remembers’ something of its previous history. Also, if the magnetic
field is concentrated by the convective motion it will absorb energy from it; alternatively,
the magnetic field can do work and so give rise to motions in the fluid.

Consider a perfectly conducting fluid in a vertical magnetic field H and suppose that the
lines of force are fixed at the boundaries of the layer (so that the vertical component of the
perturbation in the magnetic field vanishes at z = 0,d). Then, if a small motion disturbs
the system it will distort the lines of force and they will take up energy from it. This distortion
can be thought of as a magneto-hydrodynamic wave propagated along the lines of force:
the wave will be reflected at the bounding surface and when it returns it will restore the
energy to the motion reversing its momentum. So oscillations will be produced and the
lines of force will behave like elastic strings; the period of oscillation will then be the time
taken by an Alfvén wave to cross the cell. Thus no energy is permanently lost to the magnetic
field and if the thermal conductivity is high enough for the initial temperature disturbance
to have disappeared then overstability may ensue (Cowling 1957). Steady motions can only
follow when the kinetic energy of the disturbance exceeds the energy in the magnetic field,
so that the motion punches its way across the cell despite the opposition of the field lines.
As such a motion continues, the lines of force will be grossly distorted and wound up until
they may ultimately prevent the motions from continuing and so destroy the cell.

If the electrical resistivity is high, it may be possible for the magnetic perturbation to
decay (through ohmic losses) before it has had time to oppose the disturbing velocities; any
instability could then proceed unhindered. This is the condition for the exchange of
stabilities to take place.

The characteristic time for an Alfvén wave to traverse the cell is

4 (dmpd?}
"=, ~ o) (226)

(as was shown in part I). Using this we can derive conditions for the onset of different
modes of instability.

(a) Overstability

Assume that k > 5 > v, i.e. 7, < 7, < 7,, where = (4mus) ! is the resistivity,
1, = d*[mby (237)

and 7, 7, are defined similarly by (203). Then if any disturbance is formed (206) must be
satisfied and the oscillations will grow if the thermal perturbation has disappeared before
the magnetic effects reverse the motions, so that the floating forces can augment the ampli-

tude of the disturbance. Hence we require that
Ty =T1,>T,<T. (238)

17 VoL. 256. A
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If we define the Chandrasekhar numbers @, and @, so that
pH?d?
239
Q Ql 47]3 ,0 Kz ’ ( )

then magnetic fields have no significant effect till @, > 1, when overstability sets in at
lmm ~ Q
(b) Transition to steady motions

This is possible when the kinetic energy after one transit exceeds the magnetic energy;
this condition reduces to

w? > v3. (240)
A treatment like that of § 7 leads to
RY o ~ 0203 if Q3<1, (241)
and to R in.~Q; for Q> 1. (242)
Alternatively, the dimensional approach gives
T,=T>T, (243)
whence follow (241) and (242).
(¢) The exchange of stabilities
This applies if the ohmic losses predominate; then we must have
Tg=T,<T. (244)

Then magnetic fields affect the onset of convection when @, > 1, in which case

(le)mm ~ Ql (245)

The non-linear assumptions introduced in § 7 indicate that for Q, > /v, R, ~ 7@,/ «.
This condition is independent of #, x and v.
For comparison, the precise results of part I give as @ — oo

R(l )mm QB) Rg,)min. = Qs: R(l min. Ql

III. CONVECTIVE HEAT TRANSPORT
10. INTRODUCTION

In part IT we were able to establish that a physical approach, judiciously followed, can
lead to sensible results regarding the onset of instability and this encourages us to try a
similar method in discussing non-linear heat transfer. This part then is devoted to an
attempt to obtain relations between the convective energy transport, the superadiabatic
temperature gradient and the convective velocities that will enable us to answer the
question: what temperature gradient is needed for a known amount of energy to be carried
by convection? The discussion will be restricted to the case when the Prandtl number
(p = v[«) is small, which is of interest in astrophysics. After a brief review of other experi-
mental and theoretical investigations a new approach to convection is laid down and
formulae are established for the heat transport in a non-rotating and then in a rotating
system. In the latter it can be shown that overstable oscillations are unlikely to transport
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more than a trifling amount of heat and that large-scale convection is not established until
after the onset of steady instabilities as determined in part I. An estimate can also be made
of the effects of a magnetic field on convection and these are treated in the penultimate
section of this paper.

It is not to be expected that experimental results from a laboratory can simply be extra-
polated and applied to the solar convective zone. Nevertheless, a brief resumé of the
available information may be useful. Beyond the onset of convection it is convenient to
define the Nusselt number N as the ratio of the convective energy transport to the product
of the thermal conductivity £ = c¢,px and the superadiabatic temperature gradient f
(i.e. to the superadiabatic conductive transport)

N = Eqpy K. (246)

N can then be expressed as a function of (£f) and the Rayleigh, Prandtl, Taylor or Chandra-
sekhar numbers.

In the laminar range immediately beyond the onset of convection, where R, < R < 2R,,
N ~ }(R—R)) but this does not persist. Near the critical Rayleigh number R, convection
appears in polygonal cells and settles down to a steady régime of hexagons. At higher
Rayleigh numbers, although the convecting layer at any instant is entirely made up of
more or less hexagonal cells, their particular configurations change in a time of the order
of the turnover period of an individual cell. At higher Rayleigh numbers still, even this
irregular pattern ceases to exist and small-scale turbulence ensues.

Typical results are summarized by Jakob (1957) and Howarth (1953): in the laminar

range Noc Rt (10* < R[p < 4x109),
while under turbulent conditions
Noc R? (Rp > 4 x10%).

It seems that various transitions occur in this range and that different experiments may
detect different effects. Malkus (1954) claimed that he could detect discontinuities in the
slope of an R-N curve corresponding to the onset of higher modes of instability as predicted
by linear theory; and Goroff (1960) found an increase in convective transport in an over-
stable rotating system near the exchange of stabilities. Perhaps new modes can appear as
expected from linear theory, even in a highly non-linear system; however, one must in
general conclude that it is too dangerous to extrapolate from the bewildering array of
observations.

For well-established convection the only successful theoretical approach has been in
terms of Prandtl’s mixing-length /. In order to apply this theory, / must somehow—
arbitrarily—be fixed. The practice is to equate / to the depth of the convecting layer 4 and
then to assume that an element moves adiabatically and that all the work done by the
buoyancy forces goes into kinetic energy. Then the mean temperature excess or deficit
over the average at that level is taken to be

8 ~ 164, (247)
whence the convected energy per unit area is
E = LR: n*pk, (248)

17-2
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where « is the thermometric conductivity, « is the coefficient of thermal expansion,

Ry == pR, = pR[n* = yd*|m*k? (249)
and y == gaff. (250)

No one could expect so simple a theory to be precisely accurate but it is not totally
inadequate.

For sufficiently high Rayleigh numbers these motions will be turbulent and the treatment
may have to be modified. The theory of turbulence, despite the efforts of many brilliant
and ingenious mathematicians, remains inadequate. The most successful approach
has been that of Kolmogorov: he considered the turbulent energy as being derived from
the largest eddies, which are driven by convection or a shear flow and unaffected by
viscosity; this energy is then transferred to smaller and smaller eddies by the non-linear
effects until it is ultimately dissipated by viscosity in the smallest scale motions. If w is the
driven velocity of the largest eddies, of scale d, the transferred energy per unit mass per
second can depend only on w and 4 and so must have the form

¢ ~ wi/d. (251)

Kolmogorov then derived the energy spectrum of the inertial subrange, but this is of no
help for the large-scale eddies that predominate in laminar convection and also in the sun.

Another approach to turbulent convection is to expand the termperature and velocity
fields in normal modes. Ledoux, Schwarzschild & Spiegel (1961) used eigenmodecs of the
linear equations and a Heisenberg transfer coeflicient to obtain relations between the modes
in a statistically steady state. For large Rayleigh numbers they obtained r.m.s. vclocity
and temperature fluctuations

w =~ yd3dn%k, 9 ~ fd*w/6-1m% (252)
and a mean energy transfer per unit area per second of
E x 5¢,pwd = JoR5mpk. (253)

It is difficult to estimate the range of validity of their treatment, though it is certainly
invalid if R; > 1. Equations (248) and (253) each give the energy transfer £ but they are
incompatible. The simplified treatment in § 12 will show the conditions under which (248)
or (253) may be applied.

11. THE PRINCIPLES OF CONVECTIVE TRANSFER

The problem of turbulent convection is sufficiently difficult that it seems advisable to
try a less ambitious approach in order to gain some physical understanding of convection.
We shall not presume to seek more than approximate relations, based on reasonable
physical arguments. (In applications to the sun there are enough other ill-determined
parameters to make great accuracy unattainable in any case.)

Let us then consider what happens well beyond the onset of convection. The original
investigations of Bénard and those of his successors, the study of the onset of instability and
the observations of convection in the atmosphere and in the sun all indicate that it is
essentially a cellular phenomenon. Wherever a fluid element rises through the layer,
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another must sink to take its place and these two motions will be coupled: we shall assume
that convection occurs in cells unless, for some specific reason, this is impossible. It is
reasonable to suppose that the size and shape of these cells will be such as to minimize the
energy lost to higher modes by non-linear interactions and dissipated by viscosity, so that
their width should be comparable with the layer depth (unless this is prevented by some
imposed constraint). If the velocity of the gravest mode is dominant, then we should expect
from the continuity equation that the half-width a would satisfy

a=2d, (254)
so that, writing (28) in the form b2 = 1+ 2d%/a? (255)

we have 52 = 3, as was shown in §3 (f).

We shall also claim as a corollary that, even if the system is turbulent, almost all the
energy is carried by the largest eddies and that turbulent transport by the smaller scale
motions is relatively inefficient. These smaller eddies are fed by buoyancy forces and by non-
linear interactions, of which the latter are dominant. But even in a fully turbulent system
the energy transport in an eddy of scale A varies as (1/d)? and the total energy transport is
less than four times that due to the largest eddies acting alone.

Then, by assuming that all the energy is carried by eddies of the same scale as the depth
of the layer and that the temperature gradient itself and the work done by the buoyancy
forces are devoted to driving these eddies, it is possible to obtain simple relationships
between E and f.* However, these simple assumptions are not always valid, nor do deduc-
tions from them tally with the experimental results quoted in § 10. This discrepancy arises
because we have considered neither the effects of the boundaries nor those of the trans-
formation of kinetic energy into heat by viscosity in the smallest eddies. These will be
treated below.

At the upper and lower boundaries of the layer the convected heat has to be extracted
from the tangentially moving fluid, by either a thermal or an eddy conductivity. This
resolves itself into two requirements:

(i) that the time constant for thermal decay across the horizontally moving stream be
less than the time taken for it to traverse the cell, and

(i) that the temperature gradient across this stream be sufficient for the requisite
amount of heat to be transported.
Let us define F so that E = ¢,pF. (256)
Then, in order to remove heat at the upper surface there will be a boundary layer of thick-
ness x, across which there is a temperature difference A®, moving with a typical speed w:

then x2  d kA®
——— >

5 < - and F (257)

are necessary conditions, subject to

A® < 3fd and x < }d (258)

* Unno (1961) has substituted eddy coefficients of viscosity and thermal conductivity into the critical
Rayleigh number and obtains expressions similar to those in § 12 below, which are also compatible with the
theory of Vitense (1953).
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Thus, if F is very large or « very small there must be thin boundary layers at the surfaces,
across which most of the temperature gradient will act, leaving only a small temperature
difference for the comparatively trivial task of driving the motions between the layers.
Then the problem has become one of a boundary layer and large cells are irrelevant. If the
velocity varies across one of these boundary layers, as must happen if one of the boundaries
is fixed, the convection will further be complicated by the high dissipation rate owing to
kinetic and eddy viscosity.

In experiments these effects will all become important, since at least one boundary is
rigid ; however, in the convective zone and photosphere of the sun (257) is easily satisfied
and the cells may be regarded as having free boundaries. Moreover, most terrestrial fluids
have p of order unity. So it need not be demanded that convection in the sun and stars
should obey the R* or R* laws experimentally obtained.

The energy ¢ defined by (251) is ultimately liberated as heat by viscous dissipation in the
eddies of scale A, ~ (v3d/w?)*. These small-scale motions should be homogeneous and so
this heat will be uniformly distributed. Convection cannot remove this energy at the same
rate everywhere and the driving temperature distribution will consequently be affected.
Once again, the nature of the cells will be altered. First, an upper limit is set to the con-
vective velocities, since the motions cannot be maintained if ¢ is too great, i.e. if

pwd > E. (259)

So, for a fixed E, f must correspondingly be increased (though the dissipated energy should
be included in the convective transport). Secondly, the uniform liberation of energy limits
the lifetime of individual cells, otherwise heat could never be transported from regions
where convection is insignificant. This may explain the laboratory result—apparently true
also of the photospheric granulation—that the lifetime of an individual cell in a quasi-
turbulent régime is only of the order of the turnover time in the layer.

12. CONVECTION IN THE ABSENCE OF ROTATION

We can now discuss the relatively simple problem of convection between free boundaries
with p < 1. We shall assume that convection is well established, so that the Rayleigh
number R > R, and w is large enough for the Reynolds number to be much greater than
unity.

The amplitude of convection is then controlled by the inertial loss of energy to smaller
eddies and we can assume that there is an inertial subrange of homogeneous eddies through
which this energy passes before it is transformed into heat by the viscosity. The rate of change
of energy in the whole system is obtained by integrating the scalar product of the equation
of motion with the velocity over the whole volume. If we retain the Boussinesq approxima-
tion in a steady state we have

fu.[(u.V) u]d1+fu.V(£) dr =fgom9uzd7+fvu.vzud’r. (260)

Since divu = 0, for any scalar ¢, [u. V¢ dr = 0 and also [u.[(u.V)u]dr = 0. Hence the
left-hand side of (260) vanishes and the steady state is achieved when the rate of work done
by the gravitational forces is balanced by the viscous dissipation. But we have postulated
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that the latter is determined by the inertial losses from the largest eddies and is given by (251).
Thus the non-linear dissipation in the largest eddies must be equated to the mean work
done by the buoyancy forces in them and so

w3ld ~ Lgadw
or w? ~ Lgadd. (261)

Then, if the thermal conductivity is high enough, we can take the temperature of a rising
or falling element as corresponding to the distance traversed in the characteristic time for
thermal diffusion, so the temperature perturbation

d ~ wpr, (262)

(see §7), where the thermal relaxation time

T, = %{ . (263)
Then (261) reduces to w~ }y7.d. (264)
Now the mean energy transported is F=uwd (265)
and thus F ~ 1R%.n%fk. (266)

The other modes present will modify this motion, so that the streamlines run more nearly
along the edges of the cell and turn more abruptly at its top. This treatment will suffice so
long as w is small and « large enough for ¢ to be determined by the decay time 7, as in (262).
Therefore it can be applied only for

9<3pd or R,<1. (267)

When this is so, the convective heat transport will be much less than the energy carried by
conduction.

Convection only becomes important when R; is of order unity. If it utterly dominates
conduction and R; > 1, then the motions are so rapid that an element is transported from
bottom to top of the layer (or vice versa) without its heat content being affected by con-
duction. So the mean temperature difference carried will be 4 ~ 4#d, which is independent
of the conductivity «. The temperature gradient is distorted by the motions until it is steep
in boundary layers at top and bottom, between which there is only a slight gradient §’

satisfying B'Ip ~ df2wr,.
Then conservation of energy gives w? ~ %yd? (268)
whence F ~ (3R,)} n%b«. (269)
From (259) this treatment is adequate so long as
w? < ¢,? (270)

which, when R; > 1, reduces to
god < ¢, or,foragas,to gd<c,O. (271)
Thus (270) implies that the potential energy drop across the layer must be small compared
with the thermal energy of the gas. Unless (271) is satisfied, we must take
w3 == ¢, F (272)
whence F ~ [c,(3pd)%]*. (273)
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The energy fluxes defined by (269) and (273) both vary as £* and are in the ratio gad/c,, the
lesser being applicable. *

We now suppose that (270) is fulfilled: then comparison of (266) and (269) with (253)
and (248) shows that these results agree with those of Ledoux et al. (1961) when R, < 1 and
with the mixing length approach for R; > 1. The treatment in this section demonstrates the
transition from one régime to another when convection dominates conductive transport.
The other eddies present in the turbulent motion will interfere with the fundamental so
that the resultant motion closely corresponds to an element moving vertically through the
layer and then abruptly travelling along the horizontal boundaries. This is the motion
postulated in mixing-length theory, but it seems proper to suppose that the speeds are
controlled by inertial dissipation rather than by the energy fed into an isolated element.

1 _—

x
0 1 Ry

Ficure 6. Convective transport in the absence of rotation (7 < $%). N = 1 gives the conductive
heat transport; for Ry < 1, N oc Ry and for Ry > 1, N oc R},

Since both effects depend upon the non-linear terms in the equation of motion it is natural
that they should give the same result; however, the approach presented here can be
generalized to cover the narrow cells (52 > 1) produced by rotation or a magnetic field and
therefore appears to be preferable. Moreover, the condition (270) and the alternative
transport governed by (273) are not apparent from the mixing-length approach, nor is the
transition to another régime when R; < 1.

The variation of the convective transport with Rayleigh number is illustrated by the
logarithmic plot of the Nusselt number

N = F|n?fx (274)

against R, in figure 6.

13. CONVECTION AND ROTATION

The efficacy of rotation in hindering convection can now be investigated. In § 6 it was
shown that the effect of the Coriolis force is to decrease the width of the convection cells:
this increases the inertial transfer of energy to smaller eddies and so diminishes the heat
transport. As in the preceding section, the work done by the gravitational forces must be
equated to the non-linear losses in order to find a statistically steady state for the dominant
eddies, since the Coriolis forces—Ilike the pressure gradients—do no work. This discussion
is complicated by the occurrence of overstability before steady convection can set in; it will

* Unsold (1955) asserts that mixing-length theory is valid provided that w < ¢, the local sound velocity.

But ¢ ~ ¢, 0, where 0 is the absolute temperature and so (270) is a far more restrictive condition unless ¢
and @ are comparable.
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be indicated in §§ 14 and 15 that oscillations are relatively inefficient at transporting heat
and criteria will then be derived for the maintenance of large-scale motions.

However, it is necessary first to distinguish between the eigenmodes of the linear equa-
tions, which determine the motions at the onset of instability, and the eddies—which may
loosely be referred to as turbulent ‘modes’—that will be present well beyond this point.
We saw in the last section that if only one linear mode existed there could be no loss of
energy from it through the (u.V) u term. Inarotating system there is an induced horizontal,
vortical velocity u, (with amplitude #) in addition to the vertical velocity w and the normal
horizontal circulation u;. Moreover, it can be shown that for the linear modes u,.Vw = 0
and there exists some scalar ¢ such that (u,.V) u, = Vy. So, although the non-linear term
builds up other modes from the energy of the fundamental, they might be restricted so that
the inertial transfer rate from a linear mode in an elongated cell would be only (#?+w?) w/d
and independent of the cell-width. In that case we should have

u?+w? ~ gadd, (275)
while the curl of the equation of motion yields the relation
u? = 20%d%/(h2—1) (276)

between # and the angular velocity . The same result was derived, from physical argu-
ments, in § 6.

If u > w, these equations then give almost the same conditions for the maintenance of
steady convection as were obtained in parts I and II for the transition from oscillatory to
steady instabilities, namely ‘

R, > b2 T (B2—1)F if T,<b%(b2—1) (277)
or Ry >T,/(b,—1) if T,> b4(b2—1), (278)
where Ty = p*T, = 4QO2d*m2.

The analysis of § 3 showed that linear modes beyond the initial onset of convection have
horizontal eddy velocities # that can be much greater than the vertical velocity w. In a non-
linear system, on the other hand, we should expect to have 4 ~ w. A linear treatment
imposes the condition that all perturbed quantities exhibit a similar dependence on space
and time for a given mode, whence came the result that

u=Tiw/b2 (T;>1) (279)

but non-linearity frees us from this restriction; moreover, the energy of such rapid motions
could only be supplied
(i) by work done by the pressure gradients, or

(ii) by advected energy from the vertical motion.

That pressure gradients should act along the eddy velocities and be strong enough to
drive them against inertial dissipation is difficult to conceive, for the pressure itself can only
be maintained by the flow of fluid from lower levels. The advected kinetic energy, on the
other hand, can only be that corresponding to a velocity w; so that once the motion is
established the eddies must relax until  is comparable with w. Again, if u were determined
by (279) for all Rayleigh numbers, then the convective transport would be inversely

18 Vor. 256. A.
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proportional to 7% (for 73 > 1) however great R, might be. But it is apparent that as the
velocities become infinite the effects of rotation must degenerate to no more than a trifling
perturbation. We shall therefore assume that

usSw. (280)

~ When turbulence is fully established, the energy transfer to the smallest eddies cannot
remain independent of the width of the cells, so when we equate this loss to the work done
by the floating forces on the dominant ‘mode’ we must replace equation (275) by the

stronger condition that b(u2+w?) ~ godd (281)

The cell-width is restricted by the Coriolis forces but the arguments advanced in § 6 indicate
that the value of 4 is still given by (276). This attenuation of the cells enhances the inertial
dissipation in (281) and so renders the convection more difficult to maintain. Hence con-
vection must occur in elongated cells until the Rayleigh number is large enough to make

w? > 2022, (282)

If this inequality is satisfied, 2 is of order unity, the cells are more or less equidimensional
and the vortical velocity drops to some value, much less than that of w, which will satisfy
(276). In this limit, the rotation can have no more effect in restraining the convective
transport, which can then be determined as in § 12.

14. OVERSTABILITY AND HEAT TRANSPORT

If p < 1, instability first appears, as overstable oscillations, when R, = 13-5pif 7; < 1 or
when R, = 6p(373)¥if 7, > 1. The normal modes of the linearized equations show that the
simple circulation (u,+wi,) and the vortical motion u, have the same amplitude but are
90° out of phase with each other. Kinetic energy is therefore transferred from one set of
motions to the other without being dissipated and the angular frequency of oscillations at
the onset of a given mode is g = 2€)/b.

If the oscillations build up to large amplitudes the inertial terms will once again become
important and the non-linear eddies will differ from the linear eigenmodes. Turbulent
oscillatory convection would take the form of a large-scale abortive circulatory motion
which is prevented from continuing by the Coriolis forces. However, itis difficult to see how
the kinetic energy could be stored in the vortical motions (unless the initial disturbance is
limited to a narrow region, in which case the inertial dissipation would obliterate it) and the
energy acquired in each oscillation would probably be lost through turbulence to the
smallest eddies where it could be dissipated by viscosity. If a fluid element achieved a
velocity of magnitude w in the course of an oscillation, it might be expected to spread
through a distance a ~ w/2Q (283)

and the angular frequency of the motions would then be of order 2€2.

An overstable perturbation might grow into two forms of large-scale motion: either con-
vection could occur as oscillations of the sort just described or else the disturbance might
achieve a finite velocity large enough to satisfy (276) and so develop into a steady (non-
oscillatory) motion. If the latter occurs, there must be sufficient energy available from the
floating forces to balance the inertial dissipation; and we saw in the previous section that
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this cannot be so, even for linear eigenmodes, until gffer the rotating system is unstable to
non-oscillatory perturbations. So no steady convection is possible until the instability
criteria (277) and (278) are satisfied—and turbulent motions will be still further restricted
by equation (281).

Heat could still be transferred by oscillatory motions, though it is unlikely that these
could ever be an efficient means of transport. If we consider circulation in a large O-shaped
eddy between the bounding surfaces, when 7j is large, a steady motion (if it were possible)
would bring material from the bottom to the top of the layer, while oscillations can have
only a small amplitude & and merely carry fluid from a distance a below the upper surface.
So the energy transported by oscillatory modes must be less by a factor of (a/d)2.

If T; < 1and Ry < 1convectioniscontrolled by the thermal decay time 7, and so overstable
and steady motions might be of comparable efficiency, though neither would be significant
compared with the conduction of heat. Moreover, the non-linear terms introduce har-
monics which might be expected to interfere with the fundamental frequencies and so to
impair the efficiency of transport. Thus it is likely that turbulent oscillatory convection,
even if it is possible, is always far less efficient than a steady motion of the same amplitude
might be. o

For a given Rayleigh number, larger cell sizes are possible for oscillations than for steady
motions. Thus the constraint imposed by the non-linear effects would be relaxed. However,
the non-linear oscillations described earlier in this section cannot be maintained unless the
system is already unstable to steady perturbations too. For the energy loss at the end of each
bout of movement is of order 2Qw? per unit volume and must be balanced by gadw, the work
done. If oscillations of this nature occur at all, the inequality

gad > 2Qu (284)

must therefore be satisfied. If T} < 1, (284) requires that R, 2 T3 while for 73 > 1 it reduces
to Ry 2 T;. These conditions are equivalent to—or stronger than—(277) and (278) so it is
not possible to maintain these turbulent oscillations while the system remains stable to
steady perturbations. Thereafter, oscillatory modes are not solutions of the linearized
equations and will be unimportant in a non-linear system.

Thus we have shown that overstability is likely to give rise only to small convective
motions, too slow to be turbulent; such disturbances cannot be expected to transport much
heat and therefore convection should only become significant beyond the onset of steady
instabilities. This is confirmed by Goroff’s experiments, which show that the Nusselt number
has a value of only 1-06 through the overstable range. The nature of convection beyond this
region is treated in the following section.

15. HEAT TRANSPORT IN THE PRESENCE OF ROTATION
Iflarge-scale turbulent convection takes place, equations (276), (280) and (281) must be
satisfied, whence we find that for 73 < 4® convection is possible for
R,z BTH[2(2—1)]! (255)

and can first be maintained with
=3, Ry~3%Th (286)

18-2
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Beyond this value of the Rayleigh number the convected energy is determined by equation
(266). If, on the other hand, 73 > 65, turbulent convection can be maintained when

. o)
and first becomes possible at R, ~ 2T%, (288)

above which value the largest cell possible has & ~ 275/R, so that the heat transport is
given by F ~ Ryn*fx/4T%. (289)

1 —

1

0 7;}’2 1 Rs

Freure 7. Convective transport in the presence of rotation (2 € T3 < 1). N = 1 gives the
conductive transport; for 73 € Ry < 1, N oc RZ and for R; > 1, N oc Rj.

1;)%

1% R T
Ficure 8. Convective transport in the presence of rotation (75 > 1). For T,f <Ry < T3 NocR,
and for Ry > T, N oc RL.

Once R, > 2T;, rotation ceases to affect the convection and the heat transported is deter-
mined by (269); however, in the range 27§ < R, < Ty, the heat transport from (289) is
less by a factor of (R,/T;)* than that from (269).

The inertial energy loss cannot be higher than was assumed in deriving (285) and (289)
and this discussion indicates that turbulent convection appears with a finite heat transport.
The question immediately arises: what is the nature of the motions before R; exceeds the
values set above? After steady instability becomes possible on the linear theory, small
motions will appear but they will be restricted so as to keep the inertial energy losses small
and it is unlikely that the heat transport would rise abruptly before the value of R; set by
(286) or (288) is approached.

If a set of measurements were made of the Nusselt number as the Rayleigh number was
increased, for p% < T; < 1, a logarithmic plot of N against R; might appear as in figure 7.
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For Ry < T4}, convective transport is negligible, but in the neighbourhood of Ry ~ T3
convection increases suddenly in efficiency and thereafter the convective transport is the
same as it would be in the absence of rotation. Since conduction dominates convection for
R; < 1, we may say that rotation cannot appreciably affect heat transfer unless 7; 2 1.
When 75 > 1, N should vary with Ry as shown in figure 8: convection sets in as overstable
oscillations when Ry~ p T¥ but their effects are negligible. When R, 2 T%, steady instabilities
become possible and convection can become important compared with conduction.
However, the convective transport will probably only rise sharply near R, ~ T%, whereafter
N varies as R; until Ry ~ T;. The heat transport around R, = 27; may be less by a factor of
2 or 3 than in the non-rotating case but once R; > T; the effects of rotation can be ignored.

1 ' L
Ficure 9. The effects of rotation on convective transport. For Ty < 1, R, oc T}; when Ty > 1, R,
varies as T§, T} and T;. For the numbered regions, see table 5.

TABLE 5. THE EFFECTS OF ROTATION ON CONVEGCTIVE TRANSPORT

(referring to the numbered regions in figure 9)

I Convection negligible and heat transport entirely by conduction
II Convection occurs and is unaffected by rotation but heat transfer occurs almost entirely by
conduction
IITI Heat transfer dominated by convection, which is unaffected by the rotation
IV Heat transfer dominated by convection but is decreased by the rotation
V  Heat transfer by convection is much less than that in IV but may be comparable with or larger
than the conductive transfer

The effects of rotation on heat transfer are indicated in figure 9 and table 5. It may be
noted that the exchange of stabilities first occurs when

Ry = 3p~Y(3Ty)* (290)

and the largest modes have a state of marginal stability only when Ry ~ 27;/p so that when
p < 1 convection becomes important—in regions IV and V of figure 9—before the exchange
of stabilities can take place. A

Once p > 1, steady convection sets in at the exchange of stabilities ; for Prandtl numbers
of order unity, large-scale motions will be possible at about the same Rayleigh number as
the state of marginal stability, i.e. the transition from small-scale to turbulent motions is
gradual.

The conclusions reached in this section may be summarized as follows:

(i) Rotation hinders the transport of heat by convection if 7 > 1.

(ii) Overstable disturbances are of negligible importance in transporting heat.
18-3
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(iii) Convective transport is unimportantif R, < 1; butif p? < T; < 1 such convection as
can occur is hindered until R; 2 7%, whereafter rotation has no effect.

(iv) If p <1 and T; > 1, convection of heat is negligible compared with conduction
throughout region I of figure 9 but may become appreciable in region V when R; 2 T%.
The convective transport probably increases rapidly in the transition from V to IV when
R, ~ Ti.

(v) When R, > T, rotation ceases to affect the heat transport. (This statement should
remain valid even if the predictions in (iv) are not correct in detail.)

(vi) Ifp ~ 1, large-scale convection can be maintained near the exchange of stabilities.

16. CONVECTION IN A MAGNETIC FIELD

Similar results can be obtained for convection in the presence of a magnetic field. This
problem is simpler, for the circulatory motions are quite straightforward and there are no
vortices like those induced by Coriolis forces. A magnetic field differs from a rotation field
in that it can absorb energy from the motion; in a highly conducting fluid, moreover, the
material is ‘frozen’ on to the lines of force so that any motion must distort the magnetic
field and work must be done in compressing the field lines before the circulation can cross
the cell. This limits the occurrence of steady instability but the magnetic field can also
react on the motions after instability has occurred; for the circulation will further distort
the lines of force and in general increase the magnetic forces resisting motion.

s v
@W@

(@)

Ficure 10. The distortion of a magnetlc field by convection.

Y

Let us consider what happens if steady convection begins well beyond the onset of
instability, so that the motions dominate the magnetic field. Then the uniform field shown
in figure 10 (a) will be distorted and concentrated as it is carried round by the circulation,
so that the lines of force pass through the configurations depicted in figure 10 (), (¢), (d),
(e), etc., and are gradually ‘wound up’ by the motions. However, given a finite resistivity,
these lines of force can reconnect where the gradients are high and it is most likely that the
convection will concentrate the field into ‘ropes’ of flux centred on the rising and falling
currents but with no motions across them, and that these ropes will have no significant effect
on the convection. The highly contorted fields within the cells might in general be expected
ultimately to decay through ohmic losses. So the final field configuration will probably
resemble that depicted in figure 11, with negligible fields except in restricted regions of high
magnetic flux, where no motions can occur (so the field strength must be sufficient in these
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regions to prevent convection). In the remaining space convection proceeds, unhampered
by any electromagnetic forces. This must be distinguished from the ‘spaghetti’ concept of
turbulent magnetic fields, in which it is supposed that the turbulent motions will stretch
out the field lines until equipartition is achieved between magnetic and kinetic energies
(Batchelor 1950): such equipartition can only occur if the steady field in the turbulent
region is supplied and maintained by external sources, whereas the configuration of figure 11
has been achieved precisely by removing the steady field from the turbulent regions and so
effectively changing the boundary conditions. For the same reason Moffatt’s (1961)
magnetic energy spectrum cannot be applied to the turbulent region here, and the magnetic
fields in it are free to decay.
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Ficure 11. Convection in a magnetic field.

Now let us suppose that the Rayleigh number is decreased from the very high value that
has been assumed so far, until it is only just sufficient to produce convection in a fluid with

V<L <LK, (291)

where 7 is the resistivity and » the kinematic viscosity. Then the convective motion in a cell
will distort the field as in figure 10 but as it does so it is compelled to maintain the distortion
against ever-increasing electromagnetic forces and there is no time for these to decay. So
the buoyancy forces, which could only just maintain motions against the initial field, will
be overcome by the enhanced magnetic forces, the motion will be halted and perhaps even
reversed by the magnetic pressure gradients and the convective system will break down.
The lifetime of the convective cell will therefore be of the order of the time taken for an
element of fluid to circulate around it. We can determine when it is possible for an instability
to develop into quasi-steady convection, of the type just described. For the effect of the
motion is to compress the field, so producing a gradient of magnetic pressure, and to curve
the lines of force. The curvature forces are negligible for a cell in which 4% > 1 and for a cell
of half-width « the magnetic force resisting motion is of the order gH?/2ma; so the work done
by a fluid element in overcoming this is H?/2m, which is less than the kinetic energy of the
fluid element if |

w? > uH?|mp. (292)
But, as before, the motions are limited by non-linear effects so that

godd ~ bw?
and steady convection can first be maintained with 42 ~ 1 and

Ry~ Q% if @<, (293)

or Ry~ Q, if Q>1, (294)
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where the Chandrasekhar number
Qs = pH?d?[4m3pk2.

These are the same as the conditions derived from the linearized equations in part I for the
onset of steady instabilities. Therefore we may once again say that overstable oscillations
cannot develop into steady convection until after the system is unstable to steady perturba-
tions in any case. Unless Ry exceeds the value set by (293) or (294), the only convective
transport must be by oscillatory motions.

Since the kinetic energy can be transformed into magnetic energy, turbulent oscillations
(unlike those that arise in the presence of rotation) could be maintained although the
arguments advanced in § 14 indicate that they will not be very important as a means of
transporting heat.

Danielson (1961 4) showed that convection in the solar photosphere (where R; and @ are
less than unity) seems to be inhibited unless steady motions can occur, which supports the
thesis that oscillatory convection is never a very efficient means of transporting heat.

17. CONCLUSION

In this part, reasonable assumptions were made as to the effects of rotation and a magnetic
field on convection and we have succeeded in deriving thence some plausible and consistent
estimates of the magnitude of the heat transport. The justification for such a procedure is
that it suggests experiments that will confirm or reject the results obtained.

The only relevant experiments are those of Goroff (1961), using mercury in a rotating
dishpan: his results are not inconsistent with the conclusions drawn in §15. Further
measurements, for larger values of 7; and R;, would be valuable.

The discussion showed that steady turbulent convection could not develop from over-
stable perturbations unless the system were already unstable to non-oscillatory modes. This
follows from the analogy between the arguments advanced in part IT and those in §13.
In part IT it was claimed that instability could not follow unless the energy fed into a mode
enabled a fluid element to cross the cell immediately; the energy given to such a Lagrangian
element derives from the (u. V) u term of the Eulerian equations and is therefore comparable
with the energy passed through the inertial subrange for viscous dissipation (though the
latter is the larger if 42 > 1).

This work was carried out at the Department of Geodesy and Geophysics, Cambridge;
my thanks are due to Sir Edward Bullard, F.R.S. for his constant advice and encouragement.
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